Search results

Search for "multistep flow synthesis" in Full Text gives 9 result(s) in Beilstein Journal of Organic Chemistry.

Inductive heating and flow chemistry – a perfect synergy of emerging enabling technologies

  • Conrad Kuhwald,
  • Sibel Türkhan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2022, 18, 688–706, doi:10.3762/bjoc.18.70

Graphical Abstract
  • multistep flow synthesis of Iloperidone (80) accompanied with a “catch and release” purification protocol. Continuous two-step flow process consisting of Grignard reaction followed by water elimination being the last steps of a multistep flow synthesis of the hydrochloride salt of amitryptiline 84
PDF
Album
Review
Published 20 Jun 2022

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Assessing the possibilities of designing a unified multistep continuous flow synthesis platform

  • Mrityunjay K. Sharma,
  • Roopashri B. Acharya,
  • Chinmay A. Shukla and
  • Amol A. Kulkarni

Beilstein J. Org. Chem. 2018, 14, 1917–1936, doi:10.3762/bjoc.14.166

Graphical Abstract
  • 411008, India 10.3762/bjoc.14.166 Abstract The multistep flow synthesis of complex molecules has gained momentum over the last few years. A wide range of reaction types and conditions have been integrated seamlessly on a single platform including in-line separation as well as monitoring. Beyond merely
  • getting considered as ‘flow version’ of conventional ‘one-pot synthesis’, multistep flow synthesis has become the next generation tool for creating libraries of new molecules. Here we give a more ‘engineering’ look at the possibility of developing a ‘unified multistep flow synthesis platform’. A detailed
  • ’, in reality, such an envisaged system would be much more complex than these examples. Keywords: automation; continuous flow synthesis; cybernetics; multistep flow synthesis; unified platforms; Review Introduction Flow chemistry is now seen as a reliable approach for the synthesis of simple organic
PDF
Album
Review
Published 26 Jul 2018

Automating multistep flow synthesis: approach and challenges in integrating chemistry, machines and logic

  • Chinmay A. Shukla and
  • Amol A. Kulkarni

Beilstein J. Org. Chem. 2017, 13, 960–987, doi:10.3762/bjoc.13.97

Graphical Abstract
  • The implementation of automation in the multistep flow synthesis is essential for transforming laboratory-scale chemistry into a reliable industrial process. In this review, we briefly introduce the role of automation based on its application in synthesis viz. auto sampling and inline monitoring
  • , optimization and process control. Subsequently, we have critically reviewed a few multistep flow synthesis and suggested a possible control strategy to be implemented so that it helps to reliably transfer the laboratory-scale synthesis strategy to a pilot scale at its optimum conditions. Due to the vast
  • scale of operation. This classification will cover the broader range in the multistep synthesis literature. Keywords: automation; control strategy; flow chemistry; in-line monitoring; multistep synthesis optimization; Introduction Multistep flow synthesis In the recent time the concept of flow
PDF
Album
Review
Published 19 May 2017

Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis

  • Flavio Fanelli,
  • Giovanna Parisi,
  • Leonardo Degennaro and
  • Renzo Luisi

Beilstein J. Org. Chem. 2017, 13, 520–542, doi:10.3762/bjoc.13.51

Graphical Abstract
  • produce enantioenriched materials were employed. It is worth mentioning that this work represents a very nice example on the use of chiral catalysis in a multistep flow synthesis of a drug target on gram scale. The multistep synthesis of (S)-rolipram reported in Scheme 23 begins from a benzaldehyde
PDF
Album
Review
Published 14 Mar 2017

Continuous-flow synthesis of highly functionalized imidazo-oxadiazoles facilitated by microfluidic extraction

  • Ananda Herath and
  • Nicholas D. P. Cosford

Beilstein J. Org. Chem. 2017, 13, 239–246, doi:10.3762/bjoc.13.26

Graphical Abstract
  • describe the utilization of liquid–liquid microextraction to facilitate a complex, multistep flow synthesis process. Our research in the field of flow synthesis has focused on developing continuous-flow chemistry methods to access complex, drug-like molecules from readily available precursors without
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2017

The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry

  • Marcus Baumann and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2015, 11, 1194–1219, doi:10.3762/bjoc.11.134

Graphical Abstract
  • including in-line purification and in-line analysis, both being crucial in order the achieve multistep flow synthesis. As the reader will see in the following part of this review, further advancements are geared towards more readily scaled processes and will also include the development of new devices
PDF
Album
Review
Published 17 Jul 2015

Camera-enabled techniques for organic synthesis

  • Steven V. Ley,
  • Richard J. Ingham,
  • Matthew O’Brien and
  • Duncan L. Browne

Beilstein J. Org. Chem. 2013, 9, 1051–1072, doi:10.3762/bjoc.9.118

Graphical Abstract
  • directly in another synthetic step. For example, in a recent multistep flow synthesis of branched aldehydes from aryl iodides [98], an in-line aqueous extraction step following an ethylene-Heck reaction allowed the intermediate styrene products to be carried directly into a subsequent downstream
PDF
Album
Supp Info
Review
Published 31 May 2013

Multistep flow synthesis of vinyl azides and their use in the copper-catalyzed Huisgen-type cycloaddition under inductive-heating conditions

  • Lukas Kupracz,
  • Jan Hartwig,
  • Jens Wegner,
  • Sascha Ceylan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2011, 7, 1441–1448, doi:10.3762/bjoc.7.168

Graphical Abstract
  • Lukas Kupracz Jan Hartwig Jens Wegner Sascha Ceylan Andreas Kirschning Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany 10.3762/bjoc.7.168 Abstract The multistep flow synthesis of vinyl azides and their application in the synthesis of
PDF
Album
Supp Info
Video
Full Research Paper
Published 20 Oct 2011
Other Beilstein-Institut Open Science Activities